Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[*N*-(2-furylmethyl)ethane-1,2-diamine]bis(perchlorato)copper(II)

Wei Xiao,^a Shi-Rong Li,^b Hong Zhou,^a Zhi-Quan Pan^a* and Qimao Huang^a

^aKey Laboratory for Green Chemical Processes of the Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China, and ^bHubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Institute for Nationalities, Enshi, 44500, People's Republic of China Correspondence e-mail: zhiqpan@163.com

Received 23 March 2011; accepted 1 April 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; R factor = 0.049; wR factor = 0.112; data-to-parameter ratio = 13.5.

In the title complex, $[Cu(ClO_4)_2(C_7H_{12}N_2O)_2]$, the Cu(II) ion lies on a crystallographic inversion centre. The coordination sphere around Cu(II) ion can be described as tetragonally distorted octahedral with two perchlorate O atoms occupying the apical positions and four N atoms from two N^1 -(2furylmethyl)ethane-1,2-diamine ligands in the basal plane.

Related literature

For copper complexs with polyamine ligands, see: Souza *et al.* (2009); Patra *et al.* (2007); Zhou *et al.* (2009). For the synthesis, see: Wang *et al.* (2009).

Experimental

Crystal data

 $\begin{bmatrix} Cu(ClO_4)_2(C_7H_{12}N_2O)_2 \end{bmatrix}$ $M_r = 542.81$ Monoclinic, $P2_1/c$ a = 9.736 (8) Å b = 11.899 (9) Å c = 9.466 (7) Å $\beta = 94.227$ (12)°

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.712, T_{max} = 0.763$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.112$ S = 1.071914 reflections $V = 1093.6 (14) Å^{3}$ Z = 2 Mo K\alpha radiation \mu = 1.30 mm^{-1} T = 291 K 0.28 \times 0.24 \times 0.22 mm

5510 measured reflections 1914 independent reflections 1589 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.039$

142 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.70 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors would like to thank the National Natural Science Foundation of China (20871097 and 20971102) and the Foundation of the Excellent Middle-Young Innovation Group of the Education Department of Hubei Province, China (T200802).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2094).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Patra, A. K., Nethaji, M. & Chakravarty, A. R. (2007). J. Inorg. Biochem. 101, 233–244.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Souza, B., Bortoluzzi, A. J., Bortolotto, T., Fischer, F. L., Terenzi, H., Ferreira, D. E. C., Rocha, W. R. & Neves, A. (2009). *Dalton Trans.* pp. 2027–2035.

Wang, K. W., Qian, X. H. & Cui, J. N. (2009). Tetrahedron, 50, 10377–10382.

Zhou, H., Chen, L., Chen, R., Peng, Z. H., Song, Y., Pan, Z. Q., Huang, Q. M., Hu, X. L. & Bai, Z. W. (2009). CrystEngComm, 11, 671–679. supplementary materials

Acta Cryst. (2011). E67, m701 [doi:10.1107/S1600536811012232]

Bis[N-(2-furylmethyl)ethane-1,2-diamine]bis(perchlorato)copper(II)

W. Xiao, S.-R. Li, H. Zhou, Z.-Q. Pan and Q. Huang

Comment

Recently, study of copper complex with polyamine has been given considerable attention (Souza *et al.*, 2009; Patra *et al.*, 2007; Zhou *et al.*, 2009). In this paper, we report on the synthesis and the crystal structure determination of the title complex obtained by the reaction of Cu(ClO4)₂6H₂O with the polyamine ligand N¹-(furan-2-ylmethyl)ethane-1,2-diamine.

In the title complex, $[Cu(C_{14}H_{24}N_4O_2)_2](ClO_4)_2$, the Cu(II) ion lies on a crystallographic inversion centre. The coordination sphere around Cu(II) ion can be best described as slightly distorted octahedral. The basal plane is composed of four nitrogen atoms from the two polyamine ligands with the Cu-N distances of 2.001 (4) and 2.049 (4)Å. The apical positions are occupied by two oxygen atoms from two perchlorate anions with a Cu-O distance of 2.492 (4)Å.

Experimental

 N^{1} -(furan-2-ylmethyl)ethane-1,2-diamine (L) was prepared according to the literature method (Wang *et al.*, 2009). Cu(ClO4)₂6H₂O (0.25 mmol, 0.093 g) dissolved in 10ml H2O was added dropwise to a solution of L (0.5 mmol, 0.071 g)in 10ml H2O. The mixture was stirred at ambient temperature for about 12 h and filtrated. The light blue crystals suitable for X-ray diffraction were obtained by the slow evaporation of the mother solution at ambient temperature for 3 weeks.

Refinement

All H atoms for C-H distances were placed in calculated positions and included in the refinement in the riding-model approximation, with U(H) set to $-1.2U_{eq}$ of the parent atom.

Figures

Fig. 1. A view of the title complex cation, with displacement ellipsoids at the 30% probability level. H atoms are excluded for clarity. Unlabelled atoms are related to labelled atoms by inversion symmetry.

Bis[N-(2-furylmethyl)ethane-1,2-diamine]bis(perchlorato)copper (II)

Crystal data	
[Cu(ClO ₄) ₂ (C ₇ H ₁₂ N ₂ O) ₂]	
$M_r = 542.81$	

F(000) = 558 $D_x = 1.648 \text{ Mg m}^{-3}$

supplementary materials

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.736 (8) Å *b* = 11.899 (9) Å c = 9.466 (7) Å $\beta = 94.227 (12)^{\circ}$ $V = 1093.6 (14) \text{ Å}^3$ Z = 2

Data collection

Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1812 reflections
$\theta = 2.7 - 22.6^{\circ}$
$\mu = 1.30 \text{ mm}^{-1}$
<i>T</i> = 291 K
Block, blue
$0.28 \times 0.24 \times 0.22 \text{ mm}$

Bruker SMART APEX CCD diffractometer	1914 independent reflections
Radiation source: sealed tube	1589 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.039$
ω scans	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 11$
$T_{\min} = 0.712, T_{\max} = 0.763$	$k = -14 \rightarrow 12$
5510 measured reflections	$l = -11 \rightarrow 11$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.05P)^{2} + 1.33P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.70 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4721 (5)	0.3096 (4)	0.7859 (4)	0.0440 (10)
H1	0.3854	0.2781	0.7661	0.053*
C2	0.5127 (4)	0.3583 (4)	0.9007 (5)	0.0421 (10)
H2	0.4651	0.3609	0.9823	0.051*
C3	0.6429 (5)	0.4080 (4)	0.8837 (5)	0.0476 (11)
Н3	0.6939	0.4531	0.9484	0.057*
C4	0.6766 (4)	0.3770 (4)	0.7570 (4)	0.0404 (10)
C5	0.8085 (4)	0.3823 (4)	0.6885 (4)	0.0417 (10)
H5A	0.8831	0.3906	0.7616	0.050*
H5B	0.8220	0.3116	0.6405	0.050*
C6	0.7106 (5)	0.4843 (4)	0.4717 (5)	0.0468 (11)
H6A	0.6259	0.4492	0.4970	0.056*
H6B	0.6924	0.5634	0.4536	0.056*
C7	0.7570 (5)	0.4316 (4)	0.3458 (5)	0.0466 (11)
H7A	0.6909	0.4462	0.2662	0.056*
H7B	0.7621	0.3509	0.3599	0.056*
Cl1	0.90322 (11)	0.80490 (9)	0.47487 (11)	0.0422 (3)
Cu1	1.0000	0.5000	0.5000	0.0320 (2)
N1	0.8171 (4)	0.4721 (3)	0.5882 (4)	0.0465 (9)
H1B	0.8199	0.5368	0.6377	0.056*
N2	0.8951 (4)	0.4749 (3)	0.3128 (4)	0.0451 (9)
H2A	0.8864	0.5396	0.2638	0.054*
H2B	0.9387	0.4245	0.2611	0.054*
01	0.5768 (3)	0.3107 (3)	0.6947 (3)	0.0493 (8)
O2	0.9102 (3)	0.6962 (3)	0.4956 (3)	0.0493 (8)
03	0.8334 (3)	0.8393 (2)	0.3418 (3)	0.0476 (8)
O4	1.0257 (3)	0.8481 (2)	0.4616 (3)	0.0462 (7)
O5	0.8431 (3)	0.8640 (2)	0.5750 (3)	0.0446 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.044 (3)	0.046 (2)	0.042 (2)	-0.018 (2)	0.0009 (19)	0.004 (2)
C2	0.041 (2)	0.045 (2)	0.042 (2)	0.0089 (19)	0.0103 (19)	0.0034 (19)
C3	0.048 (3)	0.049 (3)	0.048 (2)	-0.015 (2)	0.015 (2)	-0.009 (2)
C4	0.035 (2)	0.057 (3)	0.0306 (19)	-0.0051 (19)	0.0070 (17)	0.0011 (18)
C5	0.042 (2)	0.041 (2)	0.043 (2)	0.0078 (19)	0.0053 (19)	0.0011 (18)
C6	0.045 (3)	0.051 (3)	0.046 (2)	-0.006 (2)	0.012 (2)	0.019 (2)
C7	0.045 (3)	0.048 (3)	0.044 (2)	-0.012 (2)	-0.0140 (19)	0.012 (2)
Cl1	0.0397 (6)	0.0441 (6)	0.0442 (6)	0.0033 (4)	0.0113 (4)	-0.0060 (4)
Cu1	0.0324 (4)	0.0315 (4)	0.0333 (4)	-0.0005 (3)	0.0110 (3)	0.0024 (3)
N1	0.043 (2)	0.050 (2)	0.048 (2)	-0.0093 (17)	0.0127 (17)	0.0170 (17)
N2	0.043 (2)	0.043 (2)	0.048 (2)	-0.0126 (16)	-0.0073 (17)	-0.0004 (16)
01	0.053 (2)	0.0482 (17)	0.0475 (17)	-0.0162 (15)	0.0109 (15)	-0.0149 (14)

supplementary materials

O2 O3 O4 O5	0.0527 (19) 0.0467 (17) 0.0469 (18) 0.0430 (17)	0.0448 (18) 0.0419 (17) 0.0466 (17) 0.0442 (16)	0.0530 (18) 0.0529 (18) 0.0474 (16) 0.0467 (16)	0.0136 (14) -0.0135 (14) -0.0021 (14) 0.0178 (14)	0.0218 (15) -0.0053 (14) 0.0193 (14) 0.0040 (13)	0.0132 (14) 0.0056 (14) 0.0084 (14) -0.0015 (13)
Geometric paran	neters (Å. °)					
	(,)	1 2 (9 (()			0.07	20
CI = C2		1.268 (6)	C6—I	H6B	0.970	JU 1 (C)
CI=0I		1.384 (5)	C7—1	N2	1.494	+ (6)
CI—HI		0.9300	C7—F	1/A	0.97	00
$C_2 = C_3$		1.419 (0)	C/—r	1/D 02	1.20)(2)
$C_2 = H_2$		1 319 (6)	C11	02	1.30	(3)
С3—Н3		0.9300	Cl1	05	1.31.	S (3)
C_{4}		1 352 (5)	C11-	03	1.34	5(3)
C4-C5		1.332 (5)	Cu1—	-N2	2.00	1 (4)
C5-N1		1.102(0)	Cu1	N2 ⁱ	2.00	1 (4)
С5—Н5А		0.9700	Cu1— Cu1—	-N2 -N1	2.04	9 (4)
С5—Н5В		0.9700	Cu1—	-N1 ⁱ	2.04	9 (4)
С6—С7		1.448 (6)	N1—I	H1B	0.90	00
C6—N1		1.465 (6)	N2—I	H2A	0.90	00
С6—Н6А		0.9700	N2—I	H2B	0.90	00
C2-C1-O1		109.5 (4)	N2—0	С7—Н7В	109.4	4
C2-C1-H1		125.3	H7A–	—С7—Н7В	108.0)
O1-C1-H1		125.3	02—0	Cl1—O4	111.3	3 (2)
C1—C2—C3		108.5 (4)	02—0	Cl1—O5	115.:	5 (2)
С1—С2—Н2		125.8	04—0	Cl1—O5	107.	9(2)
С3—С2—Н2		125.8	02—0	Cl1—O3	115.2	2 (2)
C4—C3—C2		105.7 (4)	04—0	Cl1—O3	100.2	24 (19)
C4—C3—H3		127.1	05—0	Cl1—O3	105	3 (2)
С2—С3—Н3		127.1	N2—0	Cu1—N2 ⁱ	180.	000 (1)
C3—C4—O1		109.9 (4)	N2—0	Cu1—N1	86.2	5 (16)
C3—C4—C5		131.9 (4)	N2 ⁱ —	Cu1—N1	93.7:	5 (16)
O1—C4—C5		116.9 (3)	N2—0	Cu1—N1 ⁱ	93.7:	5 (16)
N1-C5-C4		114.6 (4)	N2 ⁱ —	Cu1—N1 ⁱ	86.2	5 (16)
N1—C5—H5A		108.6	N1—0	Cu1—N1 ⁱ	180.)
C4—C5—H5A		108.6	C5—N	N1—C6	120.	0 (4)
N1—C5—H5B		108.6	C5—1	N1—Cu1	119.0) (3)
C4—C5—H5B		108.6	C6—N	N1—Cu1	105.4	4 (3)
H5A—C5—H5B		107.6	C5—N	N1—H1B	107.	1
C7—C6—N1		109.3 (4)	C6—1	N1—H1B	107.4	4
С7—С6—Н6А		109.8	Cu1—	-N1—H1B	94.6	
N1—C6—H6A		109.8	C7—1	N2—Cu1	106.	0 (3)
С7—С6—Н6В		109.8	C7—1	N2—H2A	110.:	5
N1—C6—H6B		109.8	Cu1—	-N2—H2A	110.:	5
Н6А—С6—Н6В		108.3	C7—1	N2—H2B	110.:	5
C6—C7—N2		111.2 (4)	Cu1—	-N2—H2B	110.3	5

С6—С7—Н7А	109.4	H2A—N2—H2B	108.7		
N2—C7—H7A	109.4	C4—O1—C1	105.8 (3)		
С6—С7—Н7В	109.4				
O1—C1—C2—C3	7.7 (5)	N2—Cu1—N1—C5	121.4 (3)		
C1—C2—C3—C4	-4.6 (5)	N2 ⁱ —Cu1—N1—C5	-58.6 (3)		
C2—C3—C4—O1	-0.5 (5)	N2—Cu1—N1—C6	-16.7 (3)		
C2-C3-C4-C5	-166.5 (5)	N2 ⁱ —Cu1—N1—C6	163.3 (3)		
C3—C4—C5—N1	-102.5 (6)	C6—C7—N2—Cu1	36.2 (4)		
O1—C4—C5—N1	92.3 (5)	N1—Cu1—N2—C7	-9.8 (3)		
N1—C6—C7—N2	-53.2 (5)	N1 ⁱ —Cu1—N2—C7	170.2 (3)		
C4—C5—N1—C6	-54.1 (5)	C3—C4—O1—C1	4.9 (5)		
C4—C5—N1—Cu1	173.9 (3)	C5—C4—O1—C1	173.3 (4)		
C7—C6—N1—C5	-96.6 (5)	C2—C1—O1—C4	-7.9 (5)		
C7—C6—N1—Cu1	41.1 (4)				
Symmetry codes: (i) $-x+2, -y+1, -z+1$.					

